A Framework to Learn Bayesian Network from Changing, Multiple-Source Biomedical Data
نویسندگان
چکیده
Structure learning in Bayesian network is a big issue. Many efforts have tried to solve this problem and quite a few algorithms have been proposed. However, when we attempt to apply the existing methods to microarray data, there are three main challenges: 1) there are many variables in the data set, 2) the sample size is small, and 3) microarray data are changing from experiment to experiment and new data are available quickly. To address these three problems, we assume that the major functions of a kind of cells do not change too much in different experiments, and propose a framework to learn Bayesian network from data with variable grouping. This framework has several advantages: 1) it reduces the number of variables and narrows down the search space when learning Bayesian network structure; 2) it relieves the requirement for the number of samples; and 3) the learned group Bayesian network is a higher-level abstraction of biological functions in a cell, which ision of biological functions in a cell, which is comparable from one experiment to another, and does not need to change much at the level when the learned group Bayesian network is applied to changing experiments only the relationship between a group variable and an original variable should be adjusted. We have done experiments on synthetic examples and real data to test the proposed framework. The preliminary results from synthetic examples show that the framework works with fewer samples, and the learned group Bayesian networks from different sets of experimental data agree with each other most of the time. The experiments with the real data also show some domain-meaningful results. This framework can also be applied to other domains with similar assumptions.
منابع مشابه
An Introduction to Inference and Learning in Bayesian Networks
Bayesian networks (BNs) are modern tools for modeling phenomena in dynamic and static systems and are used in different subjects such as disease diagnosis, weather forecasting, decision making and clustering. A BN is a graphical-probabilistic model which represents causal relations among random variables and consists of a directed acyclic graph and a set of conditional probabilities. Structure...
متن کاملProbabilistic Contaminant Source Identification in Water Distribution Infrastructure Systems
Large water distribution systems can be highly vulnerable to penetration of contaminant factors caused by different means including deliberate contamination injections. As contaminants quickly spread into a water distribution network, rapid characterization of the pollution source has a high measure of importance for early warning assessment and disaster management. In this paper, a methodology...
متن کاملRisk Analysis of Operating Room Using the Fuzzy Bayesian Network Model
To enhance Patient’s safety, we need effective methods for risk management. This work aims to propose an integrated approach to risk management for a hospital system. To improve patient’s safety, we should develop flexible methods where different aspects of risk and type of information are taken into consideration. This paper proposes a fuzzy Bayesian network to model and analyze risk in the op...
متن کاملExploiting Task Relatedness to Learn Multiple Bayesian Network Structures
We address the problem of learning multiple Bayesian network structures for experimental data where the experimental conditions define relationships among datasets. A metric of the relatedness of datasets, or tasks, can be described which contains valuable information that we exploit to learn more robust structures for each task. We represent the task-relatedness with an undirected graph. Our m...
متن کاملA Model for Tax Evasion Forcasting based on ID3 Algorithm and Bayesian Network
Nowadays, knowledge is a valuable and strategic source as well as an asset for evaluation and forecasting. Presenting these strategies in discovering corporate tax evasion has become an important topic today and various solutions have been proposed. In the past, various approaches to identify tax evasion and the like have been presented, but these methods have not been very accurate and the ove...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005